
  

Rust Debugging & Optimization

Presented by Herbert Wolverson



  

Who am I?
● Rust Trainer at Ardan 

Labs
● Author of Hands-on Rust, 

Rust Brain Teasers
● Maintainer of bracket-lib
● Contributor to LibreQoS
● IT Consultant and Trainer



  

What’s in this Class?
● Debugging Rust

– Formatting Data
– Logging to the Console
– The “log” and “envlog” crates
– Logging to Syslog and Beyond
– Debugging with Visual Studio 

Code
– Avoiding Making Bugs

● Optimizing Rust
– Cargo Optimization 

Profiles
– Link Time Optimization
– Building Benchmarks
– Optimizing for Size

This is a shortened (1 hour) version of the 5-day class.



  

PART 1: DEBUG LOGS

Practical techniques for debugging Rust with the 
console and log files.



  

Why debug to the console?
● Not every platform has a 

debugger.
● You can’t always attach a 

debugger and pause the 
world.

● The console (in some 
form) is always available.

● Everything you learn 
about formatting to 
the console also 
works for logging.



  

Formatting Structures
● The easy way: 

#[derive(debug)]
● println!(“{:?}”, 
my_structure);

● Downsides:
– Everything in the structure must 

also support Debug
– Limited control over the 

appearance of the output.

Try it online: https://replit.com/@HerbertWolverso/PrintDebug#src/main.rs 

https://replit.com/@HerbertWolverso/PrintDebug#src/main.rs


  

Pretty Printing with Debug
● You still 
#[derive(Debug)]

● println!(“{:#?}”, 
my_structure);

● Downsides:
– The output can be HUGE.
– You still have limited control 

over what prints.

Try it online: https://replit.com/@HerbertWolverso/PrettyPrintDebug#src/main.rs 

https://replit.com/@HerbertWolverso/PrettyPrintDebug#src/main.rs


  

Implementing 
Display

● Implementing 
Display for a 
structure gives 
you control.

● You can now:
println!
(“{my_struct}”)
;

Try it online: https://replit.com/@HerbertWolverso/DisplayDebug#src/main.rs 

https://replit.com/@HerbertWolverso/DisplayDebug#src/main.rs


  

Nested Display – Total Control

Try it online: https://replit.com/@HerbertWolverso/NestedDisplay#src/main.rs 

https://replit.com/@HerbertWolverso/NestedDisplay#src/main.rs


  

The “log” and “env_logger” 
crates

● Add dependencies to 
Cargo.toml:

● Replace println! 
with log::warn!

● Run with an 
environment variable:

Try it online: https://replit.com/@HerbertWolverso/LogCrate#src/main.rs 

https://replit.com/@HerbertWolverso/LogCrate#src/main.rs


  

Formatting still works with log

Try it online: https://replit.com/@HerbertWolverso/LogDisplay#src/main.rs  

https://replit.com/@HerbertWolverso/LogDisplay#src/main.rs


  

Sending logs elsewhere
● Replace log with 
log4rs

● Completely 
configurable logging

● Start main() with:

● Configure with YAML:



  

Implementing display functions
● Sometimes, you want 

to adjust the display 
for a specific event.

● Create a function that 
returns a String – 
don’t print directly.

● You can log strings 
however you want – 
capturing stdout is 
trickier.



  

PART 2: DEBUGGING

Debugging in Visual Studio Code



  

Setup Visual Studio Code
● Install Rust Analyzer

– Not needed for debugging, but you want it!

● Install either:
– CodeLLDB (preferred)
– Microsoft C++

● Open Settings (ctrl + ,)
– Search for “everywhere”
– Ensure “allow breakpoints everywhere” is checked.



  

Let’s Debug a Program
● Can you spot the bug?
● Even though we typed 

“Herbert”, the program 
rejects it.

● Let’s look in a 
debugger...



  

Set a Breakpoint
● Mouse over to the left 

of the line on which to 
break.

● Click, and a red circle 
appears.



  

Start the Debugger
● Open the Command Palette

– Ctrl+Shift+P
– OR View→Command Palette

● Choose “Rust-Analyzer: 
Debug”

● Select the project to debug
● Where’s the bug?



  

There’s the bug
● Hovering over “buffer” 

shows that the input string 
contains extra characters: 
line-feed and line-break.

● You can fix the problem 
by adding .trim() to the 
string.



  

When (not) to use a Debugger
● When you don’t have 

single-user access to a 
development 
environment.

● In a distributed or micro-
services environment, it’s 
not always clear which 
program to debug!

● Don’t breakpoint on a 
live system. Nobody 
will thank you for 
pausing the world.



  

PART 3: DON’T WRITE BUGS!

If only it were that simple?

Rust can help you not make bugs to begin with



  

Use Error Handling
● Use Results

– Any function can wrap a 
result in a Result<> type.

– Don’t ignore the result – 
check it.

– Combine with defensive 
programming

● Anyhow to make it easier

Try it online: https://replit.com/@HerbertWolverso/ErrorHandling#src/main.rs  

https://replit.com/@HerbertWolverso/ErrorHandling#src/main.rs


  

Require Error Acknowledgment
● Decorate functions 

that return a result 
with #[must_use]

● Not checking the 
result is now a 
compiler warning.

Try it online: https://replit.com/@HerbertWolverso/ErrorMustUse#src/main.rs   

https://replit.com/@HerbertWolverso/ErrorMustUse#src/main.rs


  

Avoid Bugs with Unit Tests
● Unit testing is built 

into Rust & Cargo
● Run your tests with 

cargo test

Try it online: https://replit.com/@HerbertWolverso/UnitTestExample#src/lib.rs  

https://replit.com/@HerbertWolverso/UnitTestExample#src/lib.rs


  

PART 4: OPTIMIZATION



  

Cargo Optimization Profiles

Quick tool-driven optimization



  

Debug Mode
● Minimal optimizations
● Full debug 

information
● Numeric overflow is 

checked

● Can be slow
● It’s the default – 
cargo build and 
cargo run use 
debug mode by 
default.



  

Tip: Optimized Debug Mode
● Still has debug 

information
● Disables overflow 

checks
● Allows some compiler 

optimizations

● Add to Cargo.toml:

● Perfect for when debug 
isn’t fast enough, but 
you still need a 
debugger



  

Release Builds
● Removes debug 

information
● Removes assertion 

and overflow checks
● Runs full compiler 

optimizations

● Execute with 
– cargo run --release
– cargo build --release



  

Link Time Optimization
● LTO permits cross-crate 

inlining.
– false: none is performed
– thin: Some is performed – 

relatively fast compile time.
– fat: optimize all calls. 

Compilation can be very 
slow.

Cargo.toml:
[profile.release]
lto = (false/thin/fat)



  

Benchmarking

Measure twice, cut once.

Only spend time optimizing things that are actually 
slow…

… and prove that your optimization made a 
difference!



  

Criterion Boilerplate
● In Cargo.toml:

– Add “criterion” has a dev 
dependency.

– Add benchmark to 
Cargo.toml

● Add “benches” folder.
● Add empty “random.rs” file.



  

Benchmarking Random Numbers

Try it online: https://replit.com/@HerbertWolverso/Benchmark#benches/random.rs 

cargo bench

https://replit.com/@HerbertWolverso/Benchmark#benches/random.rs


  

Faster Random Number 
Algorithm

Try it online: https://replit.com/@HerbertWolverso/BenchmarkFast#src/lib.rs 

● Add rand_xoshiro to 
Cargo.toml

● Replace “Rng” with 
“Xoshiro256Plus”

● Rerun benchmark

● Random number 
generation is down to 
nanoseconds.

● Why not always use 
Xoshiro?

https://replit.com/@HerbertWolverso/BenchmarkFast#src/lib.rs


  

Optimizing for Size

Rust in Embedded Development



  

Optimizing for Size on Embedded 
Platforms

● The never ending 
quest for a tiny “hello 
world”

● Take the standard 
“hello world” program

● Building in Debug:
– 155136 bytes executable
– 1380352 bytes debug info!

● Building in Release:
– 151552 bytes executable

● With opt-level “z”
– 151552 bytes executable

151,552 bytes is huge for embedded!



  

No Standard Library
● Here’s “hello world” 

without the standard 
library.

● It compiles to 14k – 
better.



  

And finally...
● https://github.com/kmcallister/tiny-rust-demo
● “Hello World” in 151 bytes.
● This illustrates the final point: optimize as much as you 

need to. You can jump through hoops to make tiny 
and/or really fast code: but you’ll spend a lot of 
developer time doing it.

● Optimize where it’s needed. 

https://github.com/kmcallister/tiny-rust-demo


  

Wrap-Up
● Any Questions?
● @herberticus on Twitter
●
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