

Rust Debugging & Optimization

Presented by Herbert Wolverson

Who am I?
● Rust Trainer at Ardan

Labs
● Author of Hands-on Rust,

Rust Brain Teasers
● Maintainer of bracket-lib
● Contributor to LibreQoS
● IT Consultant and Trainer

What’s in this Class?
● Debugging Rust

– Formatting Data
– Logging to the Console
– The “log” and “envlog” crates
– Logging to Syslog and Beyond
– Debugging with Visual Studio

Code
– Avoiding Making Bugs

● Optimizing Rust
– Cargo Optimization

Profiles
– Link Time Optimization
– Building Benchmarks
– Optimizing for Size

This is a shortened (1 hour) version of the 5-day class.

PART 1: DEBUG LOGS

Practical techniques for debugging Rust with the
console and log files.

Why debug to the console?
● Not every platform has a

debugger.
● You can’t always attach a

debugger and pause the
world.

● The console (in some
form) is always available.

● Everything you learn
about formatting to
the console also
works for logging.

Formatting Structures
● The easy way:

#[derive(debug)]
● println!(“{:?}”,
my_structure);

● Downsides:
– Everything in the structure must

also support Debug
– Limited control over the

appearance of the output.

Try it online: https://replit.com/@HerbertWolverso/PrintDebug#src/main.rs

https://replit.com/@HerbertWolverso/PrintDebug#src/main.rs

Pretty Printing with Debug
● You still
#[derive(Debug)]

● println!(“{:#?}”,
my_structure);

● Downsides:
– The output can be HUGE.
– You still have limited control

over what prints.

Try it online: https://replit.com/@HerbertWolverso/PrettyPrintDebug#src/main.rs

https://replit.com/@HerbertWolverso/PrettyPrintDebug#src/main.rs

Implementing
Display

● Implementing
Display for a
structure gives
you control.

● You can now:
println!
(“{my_struct}”)
;

Try it online: https://replit.com/@HerbertWolverso/DisplayDebug#src/main.rs

https://replit.com/@HerbertWolverso/DisplayDebug#src/main.rs

Nested Display – Total Control

Try it online: https://replit.com/@HerbertWolverso/NestedDisplay#src/main.rs

https://replit.com/@HerbertWolverso/NestedDisplay#src/main.rs

The “log” and “env_logger”
crates

● Add dependencies to
Cargo.toml:

● Replace println!
with log::warn!

● Run with an
environment variable:

Try it online: https://replit.com/@HerbertWolverso/LogCrate#src/main.rs

https://replit.com/@HerbertWolverso/LogCrate#src/main.rs

Formatting still works with log

Try it online: https://replit.com/@HerbertWolverso/LogDisplay#src/main.rs

https://replit.com/@HerbertWolverso/LogDisplay#src/main.rs

Sending logs elsewhere
● Replace log with
log4rs

● Completely
configurable logging

● Start main() with:

● Configure with YAML:

Implementing display functions
● Sometimes, you want

to adjust the display
for a specific event.

● Create a function that
returns a String –
don’t print directly.

● You can log strings
however you want –
capturing stdout is
trickier.

PART 2: DEBUGGING

Debugging in Visual Studio Code

Setup Visual Studio Code
● Install Rust Analyzer

– Not needed for debugging, but you want it!

● Install either:
– CodeLLDB (preferred)
– Microsoft C++

● Open Settings (ctrl + ,)
– Search for “everywhere”
– Ensure “allow breakpoints everywhere” is checked.

Let’s Debug a Program
● Can you spot the bug?
● Even though we typed

“Herbert”, the program
rejects it.

● Let’s look in a
debugger...

Set a Breakpoint
● Mouse over to the left

of the line on which to
break.

● Click, and a red circle
appears.

Start the Debugger
● Open the Command Palette

– Ctrl+Shift+P
– OR View→Command Palette

● Choose “Rust-Analyzer:
Debug”

● Select the project to debug
● Where’s the bug?

There’s the bug
● Hovering over “buffer”

shows that the input string
contains extra characters:
line-feed and line-break.

● You can fix the problem
by adding .trim() to the
string.

When (not) to use a Debugger
● When you don’t have

single-user access to a
development
environment.

● In a distributed or micro-
services environment, it’s
not always clear which
program to debug!

● Don’t breakpoint on a
live system. Nobody
will thank you for
pausing the world.

PART 3: DON’T WRITE BUGS!

If only it were that simple?

Rust can help you not make bugs to begin with

Use Error Handling
● Use Results

– Any function can wrap a
result in a Result<> type.

– Don’t ignore the result –
check it.

– Combine with defensive
programming

● Anyhow to make it easier

Try it online: https://replit.com/@HerbertWolverso/ErrorHandling#src/main.rs

https://replit.com/@HerbertWolverso/ErrorHandling#src/main.rs

Require Error Acknowledgment
● Decorate functions

that return a result
with #[must_use]

● Not checking the
result is now a
compiler warning.

Try it online: https://replit.com/@HerbertWolverso/ErrorMustUse#src/main.rs

https://replit.com/@HerbertWolverso/ErrorMustUse#src/main.rs

Avoid Bugs with Unit Tests
● Unit testing is built

into Rust & Cargo
● Run your tests with

cargo test

Try it online: https://replit.com/@HerbertWolverso/UnitTestExample#src/lib.rs

https://replit.com/@HerbertWolverso/UnitTestExample#src/lib.rs

PART 4: OPTIMIZATION

Cargo Optimization Profiles

Quick tool-driven optimization

Debug Mode
● Minimal optimizations
● Full debug

information
● Numeric overflow is

checked

● Can be slow
● It’s the default –
cargo build and
cargo run use
debug mode by
default.

Tip: Optimized Debug Mode
● Still has debug

information
● Disables overflow

checks
● Allows some compiler

optimizations

● Add to Cargo.toml:

● Perfect for when debug
isn’t fast enough, but
you still need a
debugger

Release Builds
● Removes debug

information
● Removes assertion

and overflow checks
● Runs full compiler

optimizations

● Execute with
– cargo run --release
– cargo build --release

Link Time Optimization
● LTO permits cross-crate

inlining.
– false: none is performed
– thin: Some is performed –

relatively fast compile time.
– fat: optimize all calls.

Compilation can be very
slow.

Cargo.toml:
[profile.release]
lto = (false/thin/fat)

Benchmarking

Measure twice, cut once.

Only spend time optimizing things that are actually
slow…

… and prove that your optimization made a
difference!

Criterion Boilerplate
● In Cargo.toml:

– Add “criterion” has a dev
dependency.

– Add benchmark to
Cargo.toml

● Add “benches” folder.
● Add empty “random.rs” file.

Benchmarking Random Numbers

Try it online: https://replit.com/@HerbertWolverso/Benchmark#benches/random.rs

cargo bench

https://replit.com/@HerbertWolverso/Benchmark#benches/random.rs

Faster Random Number
Algorithm

Try it online: https://replit.com/@HerbertWolverso/BenchmarkFast#src/lib.rs

● Add rand_xoshiro to
Cargo.toml

● Replace “Rng” with
“Xoshiro256Plus”

● Rerun benchmark

● Random number
generation is down to
nanoseconds.

● Why not always use
Xoshiro?

https://replit.com/@HerbertWolverso/BenchmarkFast#src/lib.rs

Optimizing for Size

Rust in Embedded Development

Optimizing for Size on Embedded
Platforms

● The never ending
quest for a tiny “hello
world”

● Take the standard
“hello world” program

● Building in Debug:
– 155136 bytes executable
– 1380352 bytes debug info!

● Building in Release:
– 151552 bytes executable

● With opt-level “z”
– 151552 bytes executable

151,552 bytes is huge for embedded!

No Standard Library
● Here’s “hello world”

without the standard
library.

● It compiles to 14k –
better.

And finally...
● https://github.com/kmcallister/tiny-rust-demo
● “Hello World” in 151 bytes.
● This illustrates the final point: optimize as much as you

need to. You can jump through hoops to make tiny
and/or really fast code: but you’ll spend a lot of
developer time doing it.

● Optimize where it’s needed.

https://github.com/kmcallister/tiny-rust-demo

Wrap-Up
● Any Questions?
● @herberticus on Twitter
●

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

